久久99热精品,久久国产精品久久,久久人人国产,国产精品久久久久久久久久嫩草,欧美伦理电影免费观看,国产女教师精品久久av,精品国产乱码久久久久久虫虫

初中數(shù)學圓教案

時間:2024-09-03 07:41:04 數(shù)學教案 我要投稿

初中數(shù)學圓教案

  作為一名教學工作者,往往需要進行教案編寫工作,借助教案可以提高教學質(zhì)量,收到預期的教學效果。那么你有了解過教案嗎?以下是小編為大家收集的初中數(shù)學圓教案,僅供參考,希望能夠幫助到大家。

初中數(shù)學圓教案

初中數(shù)學圓教案1

  一、教學任務分析

  1、教學目標定位

  根據(jù)《數(shù)學課程標準》和素質(zhì)教育的要求,結(jié)合學生的認知規(guī)律及心理特征而確定,即:七年級的學生對身邊有趣事物充滿好奇心,對一些有規(guī)律的問題有探求的欲望,有很強的表現(xiàn)欲,同時又具備了一定的歸納、總結(jié)表達的能力。因此,確定如下教學目標:

  (1).知識技能目標

  讓學生掌握多邊形的內(nèi)角和的公式并熟練應用。

 。2).過程和方法目標

  讓學生經(jīng)歷知識的形成過程,認識數(shù)學特征,獲得數(shù)學經(jīng)驗,進一步發(fā)展學生的說理意識和簡單推理,合情推理能力。

 。3).情感目標

  激勵學生的學習熱情,調(diào)動他們的學習積極性,使他們有自信心,激發(fā)學生樂于合作交流意識和獨立思考的習慣。

  2、教學重、難點定位

  教學重點是多邊形的內(nèi)角和的得出和應用。

  教學難點是探索和歸納多邊形內(nèi)角和的過程。

  二、教學內(nèi)容分析

  1、教材的地位與作用

  本課選自人教版數(shù)學七年級下冊第七章第三節(jié)《多邊形的內(nèi)角和》的第一課時。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,層層遞進,這樣編排易于激發(fā)學生的學習興趣,很適合學生的認知特點。

  2、聯(lián)系及應用

  本節(jié)課是以三角形的知識為基礎(chǔ),仿照三角形建立多邊形的有關(guān)概念。因此

  多邊形的邊、內(nèi)角、內(nèi)角和等等都可以同三角形類比。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會把復雜化為簡單,化未知為已知,從特殊到一般和轉(zhuǎn)化等重要的思想方法。而多邊形在工程技術(shù)和實用圖案等方面有許多的實際應用,下一節(jié)平面鑲嵌就要用到,讓學生接觸一些多邊形的實例,可以加深對它的概念以及性質(zhì)的理解。

  三、教學診斷分析

  學生對三角形的知識都已經(jīng)掌握。讓學生由三角形的內(nèi)角和等于180°,是一個定值,猜想四邊形的內(nèi)角和也是一個定值,這是學生很容易理解的地方。由幾個特殊的四邊形的內(nèi)角和出發(fā),譬如長方形、正方形的內(nèi)角和都等于360°,可知如果四邊形的內(nèi)角和是一個定值,這個定值是360°。要得到四邊形的內(nèi)角和等于360°這個結(jié)論最直接的方法就是用量角器來度量。讓學生動手探索實踐,在探索過程中發(fā)現(xiàn)問題"度量會有誤差"。發(fā)現(xiàn)問題后接著引導學生聯(lián)想對角線的作用,四邊形的一條對角線,把它分成了兩個三角形,應用三角形的內(nèi)角和等于180°,就得到四邊形的內(nèi)角和等于360°。讓學生從特殊四邊形的內(nèi)角和聯(lián)想一般四邊形的內(nèi)角和,并在思想上引導,學習將新問題化歸為已有結(jié)論的思想方法,這里學生都容易理解。課堂教學設計中,在探究五邊形,六邊形和七邊形的內(nèi)角和時,讓學生動手實踐,設置探究活動二,為了讓學生拓寬思路,從不同的角度去思考這個問題,這個活動對學生的動手能力要求進一步提高了,學生對這個問題的理解稍微有些難度,但學生可根據(jù)自己本身的特點來加以補充和完善。在教學設計中,要求根據(jù)小組選擇的方法探索多邊形的內(nèi)角和。首先,小組內(nèi)各個成員對所選擇的方法要了解,能夠把掌握的知識運用到實踐中;再者,小組內(nèi)各個成員需要分工協(xié)作,才能夠順利的把任務完成;最后,學生還需要把自己的思維從感性認識提升到理性認識的高度,這樣就培養(yǎng)了學生合情推理的意識。

  四、教法特點及預期效果分析

  本節(jié)課借鑒了美國教育家杜威的"在做中學"的理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"的思想,我確定如下教法和學法:

  1、教學方法的設計

  我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,學生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的`主體。

  2、活動的開展

  利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

  3、現(xiàn)代教育技術(shù)的應用

  我利用課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。探究活動在本次教學設計中占了非常大的比例,探究活動一設置目的讓學生動手實踐,并把新知識與學過的三角形的相關(guān)知識聯(lián)系起來;探究活動二設置目的讓學生拓寬思路,為放開書本的束縛打下基礎(chǔ);培養(yǎng)學生動手操作的能力和合情推理的意識。通過師生共同活動,訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神;使學生懂得數(shù)學內(nèi)容普遍存在相互聯(lián)系,相互轉(zhuǎn)化的特點。練習活動的設計,目的一檢查學生的掌握知識的情況,并促進學生積極思考;目的二凸現(xiàn)小組合作的特點,并促進學生情感交流。

  以上是我對《多邊形的內(nèi)角和》的教學設計說明。

初中數(shù)學圓教案2

  【學習目標】

  1.了解圓周角的概念.

  2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

  3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90的圓周角所對的弦是直徑.

  4.熟練掌握圓周角的定理及其推理的靈活運用.

  設置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運用數(shù)學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的'正確性,最后運用定理及其推導解決一些實際問題

  【學習過程】

  一、溫故知新:

  (學生活動)同學們口答下面兩個問題.

  1.什么叫圓心角?

  2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?

  二、自主學習:

  自學教材p90---p93,思考下列問題:

  1、什么叫圓周角?圓周角的兩個特征: 。

  2、在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.

  (1)一個弧上所對的圓周角的個數(shù)有多少個?

  (2).同弧所對的圓周角的度數(shù)是否發(fā)生變化?

  (3).同弧上的圓周角與圓心角有什么關(guān)系?

  3、默寫圓周角定理及推論并證明。

  4、能去掉同圓或等圓嗎?若把同弧或等弧改成同弦或等弦性質(zhì)成立嗎?

  5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?

  三、典型例題:

  例1、(教材93頁例2)如圖, ⊙o的直徑ab為10cm,弦ac為6cm,acb的平分線交⊙o于d,求bc、ad、bd的長。

  例2、如圖,ab是⊙o的直徑,bd是⊙o的弦,延長bd到c,使ac=ab,bd與cd的大小有什么關(guān)系?為什么?

  四、鞏固練習:

  1、(教材p93練習1)

  解:

  2、(教材p93練習2)

  3、(教材p93練習3)

  證明:

  4、(教材p95習題24.1第9題)

  五、 總結(jié)反思:

  【達標檢測】

  1.如圖1,a、b、c三點在⊙o上,aoc=100,則abc等于( ).

  a.140 b.110 c.120 d.130

  2.如圖2,1、2、3、4的大小關(guān)系是( )

  a.3 b.32

  c.2 d.2

  3.如圖3,(中考題)ab是⊙o的直徑,bc,cd,da是⊙o的弦,且bc=cd=da,則bcd等于( )

  a.100 b.110 c.120 d.130

  4.半徑為2a的⊙o中,弦ab的長為2 a,則弦ab所對的圓周角的度數(shù)是________.

  5.如圖4,a、b是⊙o的直徑,c、d、e都是圓上的點,則2=_______.

  6.(中考題)如圖5,于,若,則

  7.如圖,弦ab把圓周分成1:2的兩部分,已知⊙o半徑為1,求弦長ab.

  【拓展創(chuàng)新】

  1.如圖,已知ab=ac,apc=60

  (1)求證:△abc是等邊三角形.

  (2)若bc=4cm,求⊙o的面積.

  2、教材p95習題24.1第12、13題。

  【布置作業(yè)】教材p95習題24.1第10、11題。

初中數(shù)學圓教案3

  一、教學目標

  1、了解二次根式的意義;

  2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3、掌握二次根式的性質(zhì)和,并能靈活應用;

  4、通過二次根式的計算培養(yǎng)學生的邏輯思維能力;

  5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學美。

  二、教學重點和難點

  重點:

 。1)二次根的意義;

 。2)二次根式中字母的取值范圍。

  難點:確定二次根式中字母的取值范圍。

  三、教學方法

  啟發(fā)式、講練結(jié)合。

  四、教學過程

  (一)復習提問

  1、什么叫平方根、算術(shù)平方根?

  2、說出下列各式的意義,并計算

 。ǘ┮胄抡n

  新課:二次根式

  定義:式子叫做二次根式。

  對于請同學們討論論應注意的問題,引導學生總結(jié):

 。1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

  (2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態(tài)”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學生分析、回答。

  例1當a為實數(shù)時,下列各式中哪些是二次根式?

  例2 x是怎樣的實數(shù)時,式子在實數(shù)范圍有意義?

  解:略。

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x—3是非負數(shù),式子有意義。

  例3當字母取何值時,下列各式為二次根式:

  分析:由二次根式的定義,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式。

  解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當a、b為任意實數(shù)時,是二次根式。

  (2)—3x≥0,x≤0,即x≤0時,是二次根式。

  (3),且x≠0,∴x>0,當x>0時,是二次根式。

 。4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。

  例4下列各式是二次根式,求式子中的`字母所滿足的條件:

  分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

  解:(1)由2a+3≥0,得。

 。2)由,得3a—1>0,解得。

 。3)由于x取任何實數(shù)時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。

 。4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

初中數(shù)學圓教案4

  一、課題

  27.3過三點的圓

  二、教學目標

  1.經(jīng)歷過一點、兩點和不在同一直線上的三點作圓的過程.

  2..知道過不在同一條直線上的三個點畫圓的方法

  3.了解三角形的外接圓和外心.

  三、教學重點和難點

  重點:經(jīng)歷過一點、兩點和不在同一直線上的三點作圓的過程.

  難點:知道過不在同一條直線上的三個點畫圓的方法.

  四、教學手段

  現(xiàn)代課堂教學手段

  五、教學方法

  學生自己探索

  六、教學過程設計

 。ㄒ唬、新授

  1.過已知一個點a畫圓,并考慮這樣的圓有多少個?

  2.過已知兩個點a、b畫圓,并考慮這樣的圓有多少個?

  3.過已知三個點a、b、c畫圓,并考慮這樣的圓有多少個?

  讓學生以小組為單位,進行探索、思考、交流后,小組選派代表向全班學生展示本小組的探索成果,在展示后,接受其他學生的質(zhì)疑.

  得出結(jié)論:過一點可以畫無數(shù)個圓;過兩點也可以畫無數(shù)個圓;這些圓的圓心都在連結(jié)這兩點的線段的垂直平分線上;經(jīng)過不在同一直線上的三個點可以畫一個圓,并且這樣的圓只有一個.

  不在同一直線上的三個點確定一個圓.

  給出三角形外接圓的概念:經(jīng)過三角形三個頂點可以作一個圓,這個圓叫作三角形的`外接圓,外接圓的圓心叫做三角形的外心.

  例:畫已知三角形的外接圓.

  讓學生探索課本第15頁習題1.

  一起探究

  八年級(一)班的學生為老區(qū)的小朋友捐款500元,準備為他們購買甲、乙兩種圖書共12套.已知甲種圖書每套45元,乙種圖書每套40元.這些錢最多能買甲種圖書多少套?

  分析:帶領(lǐng)學生完成課本第13頁的表格,并完成2、3問題,使學生清楚通過列表可以更好的分析題目,對于情景較為復雜的問題情景可采用這種分析方法解題.另外通過此題,使學生認識到:在應不等式解決實際問題時,當求出不等式的解集后,還要根據(jù)問題的實際意義確定問題的解.

 。ǘ、小結(jié)

  七、練習設計

  p15習題2、3

  八、教學后記

  后備練習:

  1.已知一個三角形的三邊長分別是,則這個三角形的外接圓面積等于.

  2.如圖,有a,C三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在()

  a.在ac,bc兩邊高線的交點處

  b.在ac,bc兩邊中線的交點處

  c.在ac,bc兩邊垂直平分線的交點處

  d.在a,b兩內(nèi)角平分線的交點處

初中數(shù)學圓教案5

  教學目標:

  1、使學生學會較熟煉地運用切線的判定方法和切線的性質(zhì)證明問題。

  2、掌握運用切線的性質(zhì)和切線的判定的有關(guān)問題中輔助線引法的基本規(guī)律。

  教學重點:

  使學生準確、熟煉、靈活地運用切線的判定方法及其性質(zhì)。教學難點:學生對題目不能準確地進行論證。證題中常會出現(xiàn)不知如何入手,不知往哪個方向證的情形。

  教學過程:

  一、新課引入:

  我們已經(jīng)系統(tǒng)地學習了切線的判定方法和切線的性質(zhì),現(xiàn)在我們來利用這些知識證明有關(guān)幾何問題。

  二、新課講解:

  實際上在幾何證明題中,我們更多地將切線的判定定理和性質(zhì)定理應用在具體的問題中,而一道幾何題的分析過程,是證題中的最關(guān)鍵步驟。p.109例3如圖7-58,已知:ab是⊙o的直徑,bc是⊙o的切線,切點為b,oc平行于弦ad.求證:dc是⊙o的切線。

  分析:欲證cd是⊙o的切線,d是⊙o的弦ad的一個端點當然在⊙o上,屬于公共點已給定,而證直線是圓的切線的情形。所以輔助線應該是連結(jié)oc.只要證od⊥cd即可。亦就是證∠odc=90°,所以只要證∠odc=∠obc即可,觀察圖形,兩個角分別位于△odc和△obc中,如果兩個三角形相似或全等都可以產(chǎn)生對應角相等的結(jié)果。而圖形中已存在明顯的條件od=ob,oc=oc,只要證∠3=∠4,便可造成兩個三角形全等。

  ∠3如何等于∠4呢?題中還有一個已知條件ad∥oc,平行的位置關(guān)系,可以造成角的.相等關(guān)系,從而導致∠3=∠4.命題得證。證明:連結(jié)od.教師向?qū)W生解釋書上的證題格式屬于推出法和因為所以法的聯(lián)用,以后證題中同學可以借鑒。p.110例4如圖7-59,在以o為圓心的兩個同心圓中,大圓的弦ab和cd相等,且ab與小圓相切于點e求證:cd與小圓相切。

  分析:欲證cd與小⊙o相切,但讀題后發(fā)現(xiàn)直線cd與小⊙o并未已知公共點。這個時候我們必須從圓心o向cd作垂線,設垂足為f.此時f點在直線cd上,如果我們能證得of等于小⊙o的半徑,則說明點f必在小⊙o上,即可根據(jù)切線的判定定理認定cd與小⊙o相切。題目中已告訴我們ab切小⊙o于e,連結(jié)oe,便得到小⊙o的一條半徑,再根據(jù)大⊙o中弦相等則弦心距也相等,則可得到of=oe.證明:連結(jié)oe,過o作of⊥cd,重足為f.

  請同學們注意本題中證一條直線是圓的切線時,這種證明途徑是由直線與圓的公共點來給定所決定的。

  練習

  p.111,1.已知:oc平分∠aob,d是oc上任意一點,⊙d與oa相切于點e.求證:ob與⊙d相切。分析:審題后發(fā)現(xiàn)欲證的ob與⊙d相切,屬于ob與⊙d無公共點的情況。這時應從圓心d向⊙b作垂線,垂足為f,然后證垂線段df等于⊙b的一條半徑,而題目中已給oa與⊙d切于點e,只要連結(jié)de.再根據(jù)角平分線的性質(zhì),問題便得到解決。證明:連結(jié)de,作df⊥ob,重足為f.p.111中2.已知如圖7-61,△abc為等腰三角形,o是底邊bc的中點,⊙o與腰ab相切于點d.求證:ac與⊙o相切。

  分析:欲證ac與⊙o相切,同第1題一樣,同屬于直線與圓的公共點未給定情況。輔助線的方法同第1題,證法類同。只不過要針對本題特點還要連結(jié)oa.從等腰三角形的”三線合一”的性質(zhì)出發(fā),證得oa平分∠bac,然后再根據(jù)角平分線的性質(zhì),使問題得到證明。證明:連結(jié)od、oa,作oe⊥ac,垂足為e.同學們想一想,在證明oe=od時,還可以怎樣證?

  (答案)可通過“角、角、邊”證rt△odb≌rt△oec.

  三、新課講解

  為培養(yǎng)學生閱讀教材的習慣讓學生閱讀109頁到110頁。從中總結(jié)出本課的主要內(nèi)容:

  1.在證題中熟練應用切線的判定方法和切線的性質(zhì)。

  2.在證明一條直線是圓的切線時,只能遇到兩種情形之一,針對不同的情形,選擇恰當?shù)淖C明途徑,務必使同學們真正掌握。

  (1)公共點已給定。做法是“連結(jié)”半徑,讓半徑“垂直”于直線。

  (2)公共點未給定。做法是從圓心向直線“作垂線”,證“垂線段等于半徑”。

  四、布置作業(yè)

  教材p.116中8、9.2.教材p.117

初中數(shù)學圓教案6

  一、內(nèi)容和內(nèi)容解析

 。ㄒ唬﹥(nèi)容

  概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡單不等式的解集、

 。ǘ﹥(nèi)容解析

  現(xiàn)實生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系、本節(jié)課從生活實際出發(fā)導入常見行程問題的不等關(guān)系,使學生充分認識到學習不等式的重要性和必然性,激發(fā)他們的求知欲望、再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念、前面學過方程、方程的解、解方程的概念、通過類比教學、不等式、不等式的解、解不等式幾個概念不難理解、但是對于初學者而言,不等式的解集的理解就有一定的難度、因此教材又進行數(shù)形結(jié)合,用數(shù)軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助、

  基于以上分析,可以確定本節(jié)課的教學重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上、

  二、目標和目標解析

 。ㄒ唬┙虒W目標

  1、理解不等式的概念

  2、理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系

  3、了解解不等式的概念

  4、用數(shù)軸來表示簡單不等式的解集

 。ǘ┠繕私馕

  1、達成目標1的標志是:能正確區(qū)別不等式、等式以及代數(shù)式、

  2、達成目標2的標志是:能理解不等式的'解是解集中的某一個元素,而解集是所有解組成的一個集合、

  3、達成目標3的標志是:理解解不等式是求不等式解集的一個過程、

  4、達成目標4的標志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個重要體現(xiàn),也是學習不等式的一種重要工具、操作時,要掌握好“兩定”:一是定界點,一般在數(shù)軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右、

  三、教學問題診斷分析

  本節(jié)課實質(zhì)是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學,學生不難理解,但是對不等式的解集的理解就有一定的難度、因此,本節(jié)課的教學難點是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集、

  四、教學支持條件分析

  利用多媒體直觀演示課前引入問題,激發(fā)學生的學習興趣、

  五、教學過程設計

 。ㄒ唬﹦赢嬔菔厩榫凹と

  多媒體演示:兩個體重相同的孩子正在蹺蹺板上做游戲,現(xiàn)在換了一個大人上去,蹺蹺板發(fā)生了傾斜,游戲無法繼續(xù)進行下去了,這是什么原因呢?

  設計意圖:通過實例創(chuàng)設情境,從“等”過渡到“不等”,培養(yǎng)學生的觀察能力,分析能力,激發(fā)他們的學習興趣、

  (二)立足實際引出新知

  問題一輛勻速行駛的汽車在11︰20距離a地50km,要在12︰00之前駛過a地,車速應滿足什么條件?

  小組討論,合作交流,然后小組反饋交流結(jié)果、最后,老師將小組反饋意見進行整理(學生沒有討論出來的思路老師進行補充)

  1、從時間方面慮:2、從行程方面:<>50

  3、從速度方面考慮:x>50÷

  設計意圖:培養(yǎng)學生合作、交流的意識習慣,使他們積極參與問題的討論,并敢于發(fā)表自己的見解、老師對問題解決方法的梳理與補充,發(fā)散學生思維,培養(yǎng)學生分析問題、解決問題的能力、

 。ㄈ┚o扣問題概念辨析

  1、不等式

  設問1:什么是不等式?

  設問2:能否舉例說明?由學生自學,老師可作適當補充、比如:是不等式、

  2、不等式的解

  設問1:什么是不等式的解?

  設問2:不等式的解是唯一的嗎?

  由學生自學再討論、

  老師點撥:由x>50÷得x>75

  說明x任意取一個大于75的數(shù)都是不等式3、不等式的解集

  設問1:什么是不等式的解集?<,>50的解、<,>50,x>50÷都

  設問2:不等式的解集與不等式的解有什么區(qū)別與聯(lián)系?

  由學生自學后再小組合作交流、

  老師點撥:不等式的解是不等式解集中的一個元素,而不等式的解集是不等式所有解組成的一個集合、

  4、解不等式

  設問1:什么是解不等式?

  由學生回答、

  老師強調(diào):解不等式是一個過程、

  設計意圖:培養(yǎng)學生的自學能力,進一步培養(yǎng)學生合作交流的意識、遵循學生的認知規(guī)律,有意識、有計劃、有條理地設計一些問題,可以讓學生始終處于積極的思維狀態(tài),不知不覺中接受了新知識、老師再適當點撥,加深理解、

 。ㄋ模⿺(shù)形結(jié)合,深化認識

  問題1:由上可知,x>75既是不等式的解集、那么在數(shù)軸上如何表示x>75呢?

  問題2:如果在數(shù)軸上表示x≤ 75,又如何表示呢?

  由老師講解,注意規(guī)范性,準確性、

  老師適當補充:“≥”與“≤”的意義,并強調(diào)用“≥”或“≤”連接的式子也是不等式、比如x≤ 75就是不等式、

  設計意圖:通過數(shù)軸的直觀讓學生對不等式的解集進一步加深理解,滲透數(shù)形結(jié)合思想、

 。ㄎ澹w納小結(jié),反思提高

  教師與學生一起回顧本節(jié)課所學主要內(nèi)容,并請學生回答如下問題

  1、什么是不等式?

 。嫉慕饧,也是不等式>50

  2、什么是不等式的解?

  3、什么是不等式的解集,它與不等式的解有什么區(qū)別與聯(lián)系?

  4、用數(shù)軸表示不等式的解集要注意哪些方面?

  設計意圖:歸納本節(jié)課的主要內(nèi)容,交流心得,不斷積累學習經(jīng)驗、

 。┎贾米鳂I(yè),課外反饋

  教科書第119頁第1題,第120頁第2,3題、

  設計意圖:通過課后作業(yè),教師及時了解學生對本節(jié)課知識的掌握情況,以便對教學進度和方法進行適當?shù)恼{(diào)整、

  六、目標檢測設計

  1、填空

  下列式子中屬于不等式的有___________________________

  ①x +7>

 、冖趚≥ y + 2 = 0④ 5x + 7

  設計意圖:讓學生正確區(qū)分不等式、等式與代數(shù)式,進一步鞏固不等式的概念、

  2、用不等式表示

 、 a與5的和小于7

 、 a的與b的3倍的和是非負數(shù)

 、壅叫蔚倪呴L為xcm,它的周長不超過160cm,求x滿足的條件

  設計意圖:培養(yǎng)學生審題能力,既要正確抓住題目中的關(guān)鍵詞,如“大于(小于)、非負數(shù)(正數(shù)或負數(shù))、不超過(不低于)”等等,正確選擇不等號,又要注意實際問題中的數(shù)量的實際意義、

初中數(shù)學圓教案7

  教材與學情:

  解直角三角形的應用是在學生熟練掌握了直角三角形的解法的基礎(chǔ)上進行教學,它是把一些實際問題轉(zhuǎn)化為解直角三角形的數(shù)學問題,對分析問題能力要求較高,這會使學生學習感到困難,在教學中應引起足夠的重視。

  信息論原理:

  將直角三角形中邊角關(guān)系作為已有信息,通過復習(輸入),使學生更牢固地掌握(貯存);再通過例題講解,達到信息處理;通過總結(jié)歸納,使信息優(yōu)化;通過變式練習,使信息強化并能靈活運用;通過布置作業(yè),使信息得到反饋。

  教學目標:

 、闭J知目標:

 、哦贸R娒~(如仰角、俯角)的意義

 、颇苷_理解題意,將實際問題轉(zhuǎn)化為數(shù)學

 、悄芾靡延兄R,通過直接解三角形或列方程的方法解決一些實際問題。

  ⒉能力目標:培養(yǎng)學生分析問題和解決問題的能力,培養(yǎng)學生思維能力的靈活性。

 、城楦心繕耍菏箤W生能理論聯(lián)系實際,培養(yǎng)學生的`對立統(tǒng)一的觀點。

  教學重點、難點:

  重點:利用解直角三角形來解決一些實際問題

  難點:正確理解題意,將實際問題轉(zhuǎn)化為數(shù)學問題。

  信息優(yōu)化策略:

 、旁趯W生對實際問題的探究中,神經(jīng)興奮,思維活動始終處于積極狀態(tài)

 、圃跉w納、變換中激發(fā)學生思維的靈活性、敏捷性和創(chuàng)造性。

 、侵匾晫W法指導,以加速教學效績信息的順利體現(xiàn)。

  教學媒體:

  投影儀、教具(一個銳角三角形,可變換圖2-圖7)

  高潮設計:

  1、例1、例2圖形基本相同,但解法不同;這是為什么?學生的思維處于積極探求狀態(tài)中,從而激發(fā)學生學習的積極性和主動性

  2、將一個銳角三角形紙片通過旋轉(zhuǎn)、翻折等變換,使學生對問題本質(zhì)有了更深的認識

  教學過程:

  一、復習引入,輸入并貯存信息:

  1.提問:如圖,在rt△abc中,∠c=90°。

 、湃卆、b、c有什么關(guān)系?

 、苾射J角∠a、∠b有怎樣的關(guān)系?

 、沁吪c角之間有怎樣的關(guān)系?

  2.提問:解直角三角形應具備怎樣的條件:

  注:直角三角形的邊角關(guān)系及解直角三角形的條件由投影給出,便于學生貯存信息

  二、實例講解,處理信息:

  例1.(投影)在水平線上一點c,測得同頂?shù)难鼋菫?0°,向山沿直線前進20為到d處,再測山頂a的仰角為60°,求山高ab。

 、乓龑W生將實際問題轉(zhuǎn)化為數(shù)學問題。

  ⑵分析:求ab可以解rt△abd和

  rt△abc,但兩三角形中都不具備直接條件,但由于∠adb=2∠c,很容易發(fā)現(xiàn)ad=cd=20米,故可以解rt△abd,求得ab。

 、墙忸}過程,學生練習。

 、人伎迹杭偃纭蟖db=45°,能否直接來解一個三角形呢?請看例2。

  例2.(投影)在水平線上一點c,測得山頂a的仰角為30°,向山沿直線前進20米到d處,再測山頂a的仰角為45°,求山高ab。

  分析:

 、旁趓t△abc和rt△abd中,都沒有兩個已知元素,故不能直接解一個三角形來求出ab。

 、瓶紤]到ab是兩直角三角形的直角邊,而cd是兩直角三角形的直角邊,而cd均不是兩個直角三角形的直角邊,但cd=bc=bd,啟以學生設ab=x,通過列方程來解,然后板書解題過程。

  解:設山高ab=x米

  在rt△adb中,∠b=90°∠adb=45°

  ∵bd=ab=x(米)

  在rt△abc中,tgc=ab/bc

  ∴bc=ab/tgc=√3(米)

  ∵cd=bc-bd

  ∴√3x-x=20解得x=(10√3+10)米

  答:山高ab是(10√3+10)米

  三、歸納總結(jié),優(yōu)化信息

  例2的圖開完全一樣,如圖,均已知∠1、∠2及cd,例1中∠2=2∠1求ab,則需解rt△abd例2中∠2≠2∠1求ab,則利用cd=bc-bd,列方程來解。

  四、變式訓練,強化信息

  (投影)練習1:如圖,山上有鐵塔cd為m米,從地上一點測得塔頂c的仰角為∝,塔底d的仰角為β,求山高bd。

  練習2:如圖,海岸上有a、b兩點相距120米,由a、b兩點觀測海上一保輪船c,得∠cab=60°∠cba=75°,求輪船c到海岸ab的距離。

  練習3:在塔pq的正西方向a點測得頂端p的

  仰角為30°,在塔的正南方向b點處,測得頂端p的仰角為45°且ab=60米,求塔高pq。

  教師待學生解題完畢后,進行講評,并利用教具揭示各題實質(zhì):

  ⑴將基本圖形4旋轉(zhuǎn)90°,即得圖5;將基本圖形4中的rt△abd翻折180°,即可得圖6;將基本圖形4中rt△abd繞ab旋轉(zhuǎn)90°,即可得圖7的立體圖形。

  ⑵引導學生歸納三個練習題的等量關(guān)系:

  練習1的等量關(guān)系是ab=ab;練習2的等量關(guān)系是ad+bd=ab;練習3的等量關(guān)系是aq2+bq2=ab2

  五、作業(yè)布置,反饋信息

  《幾何》第三冊p57第10題,p58第4題。

  板書設計:

  解直角三角形的應用

  例1已知:………例2已知:………小結(jié):………

  求:………求:………

  解:………解:………

  練習1已知:………練習2已知:………練習3已知:………

  求:………求:………求:………

  解:………解:………解:………

【初中數(shù)學圓教案】相關(guān)文章:

初中數(shù)學圓教案12-29

初中數(shù)學圓教案5篇12-29

初中數(shù)學《圓》說課稿03-19

初中數(shù)學 和圓有關(guān)的比例線段 教案02-27

圓數(shù)學教案03-29

數(shù)學圓的面積教案02-15

初中數(shù)學圓教學反思02-17

初中數(shù)學圓教學反思03-27

小學圓的數(shù)學教案04-23

万盛区| 密山市| 惠东县| 安庆市| 余庆县| 上蔡县| 永昌县| 观塘区| 象州县| 大荔县| 娱乐| 三门县| 黑山县| 方山县| 长宁区| 原平市| 同仁县| 凤翔县| 盐源县| 收藏| 仙桃市| 哈密市| 石嘴山市| 和政县| 商都县| 古交市| 桑日县| 惠州市| 洛宁县| 抚州市| 四子王旗| 新乐市| 泾阳县| 江山市| 安西县| 大庆市| 宜兰县| 客服| 巴彦县| 涿鹿县| 南城县|