y,那么yy;(對稱性)
如果x>y,y>z;那么x>z;(傳遞性)
如果x>y,而z為任意實數(shù)或整式,那么x+z>y+z;(加法原則,或叫同向不等式可加性)
">

久久99热精品,久久国产精品久久,久久人人国产,国产精品久久久久久久久久嫩草,欧美伦理电影免费观看,国产女教师精品久久av,精品国产乱码久久久久久虫虫

高中不等式的基本性質(zhì)

回答
瑞文問答

2024-05-03

如果x>y,那么yy;(對稱性)
如果x>y,y>z;那么x>z;(傳遞性)
如果x>y,而z為任意實數(shù)或整式,那么x+z>y+z;(加法原則,或叫同向不等式可加性)

擴展資料

  如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原則)

  如果x>y,m>n,那么x+m>y+n;(充分不必要條件)

  如果x>y>0,m>n>0,那么xm>yn;

  如果x>y>0,xn>yn(n為正數(shù)),xn<yn(n為負數(shù));

  或者說,不等式的基本性質(zhì)的另一種表達方式有:

 、賹ΨQ性;

  ②傳遞性;

  ③加法單調(diào)性,即同向不等式可加性;

 、艹朔▎握{(diào)性;

 、萃蛘挡坏仁娇沙诵裕

 、拚挡坏仁娇沙朔;

  ⑦正值不等式可開方;

 、嗟箶(shù)法則。

  如果由不等式的基本性質(zhì)出發(fā),通過邏輯推理,可以論證大量的初等不等式。

  另,不等式的特殊性質(zhì)有以下三種:

  ①不等式性質(zhì)1:不等式的兩邊同時加上(或減去)同一個數(shù)(或式子),不等號的方向不變;

 、诓坏仁叫再|(zhì)2:不等式的兩邊同時乘(或除以)同一個正數(shù),不等號的方向不變;

 、鄄坏仁叫再|(zhì)3:不等式的兩邊同時乘(或除以)同一個負數(shù),不等號的方向變。

海伦市| 新化县| 抚松县| 兰坪| 莆田市| 诸城市| 阳信县| 新绛县| 和林格尔县| 济阳县| 区。| 金平| 台东市| 太仓市| 福建省| 黑龙江省| 万宁市| 拉孜县| 河北区| 凌海市| 额敏县| 纳雍县| 惠东县| 颍上县| 湄潭县| 河池市| 台南市| 山西省| 仪征市| 洱源县| 攀枝花市| 封丘县| 赤水市| 崇左市| 天全县| 从江县| 启东市| 五家渠市| 诸暨市| 深州市| 泰和县|