1/n(n+1)=1/n-1/(n+1)
1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
1/(√daoa+√b)=[1/(a-b)](√a-√b)
n·n!=(n+1)!-n">

久久99热精品,久久国产精品久久,久久人人国产,国产精品久久久久久久久久嫩草,欧美伦理电影免费观看,国产女教师精品久久av,精品国产乱码久久久久久虫虫

裂項相消萬能公式有哪些

回答
瑞文問答

2024-08-13

裂項相消的公式
1/n(n+1)=1/n-1/(n+1)
1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
1/(√daoa+√b)=[1/(a-b)](√a-√b)
n·n!=(n+1)!-n

擴展資料

  裂項法求和

 。1)1/[n(n+1)]=(1/n)- [1/(n+1)]

 。2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]

  (3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}

 。4)1/(√a+√b)=[1/(a-b)](√a-√b)

 。5) n·n!=(n+1)!-n!

 。6)1/[n(n+k)]=1/k[1/n-1/(n+k)]

 。7)1/[√n+√(n+1)]=√(n+1)-√n

 。8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]

  數(shù)列求和的常用方法

  1、分組法求數(shù)列的和:如an=2n+3n

  2、錯位相減法求和:如an=n·2^n

  3、裂項法求和:如an=1/n(n+1)

  4、倒序相加法求和:如an= n

  5、求數(shù)列的最大、最小項的方法:

 、 an+1-an=…… 如an= -2n2+29n-3

  ② (an>0) 如an=

 、 an=f(n) 研究函數(shù)f(n)的增減性 如an= an^2+bn+c(a≠0)

  6、在等差數(shù)列 中,有關Sn 的最值問題——常用鄰項變號法求解:

  (1)當 a1>0,d<0時,滿足{an}的項數(shù)m使得Sm取最大值.

  (2)當 a1<0,d>0時,滿足{an}的項數(shù)m使得Sm取最小值.

  7、對于1/n+1/(n+1)+1/(n+2)……+1/(n+n)的算式同樣適用。

加查县| 吉水县| 当阳市| 通江县| 桃园县| 明星| 梓潼县| 张掖市| 裕民县| 湘西| 临泽县| 景东| 平安县| 仪征市| 浮山县| 禹城市| 鹤壁市| 读书| 工布江达县| 山东省| 涪陵区| 金山区| 肥城市| 淳化县| 饶河县| 吴江市| 泰和县| 定州市| 丹东市| 伊金霍洛旗| 昌都县| 建水县| 海丰县| 永丰县| 镇安县| 鹰潭市| 浙江省| 醴陵市| 平和县| 偃师市| 定陶县|