- 高中數(shù)學(xué)立體幾何知識點(diǎn)總結(jié) 推薦度:
- 相關(guān)推薦
高中數(shù)學(xué)立體幾何知識點(diǎn)總結(jié)大全
總結(jié)是指社會團(tuán)體、企業(yè)單位和個人在自身的某一時期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價,從而肯定成績,得到經(jīng)驗(yàn),找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,不如我們來制定一份總結(jié)吧?偨Y(jié)一般是怎么寫的呢?以下是小編為大家整理的高中數(shù)學(xué)立體幾何知識點(diǎn)總結(jié)大全,希望對大家有所幫助。
高中數(shù)學(xué)立體幾何知識點(diǎn)總結(jié)1
1.平面的基本性質(zhì):掌握三個公理及推論,會說明共點(diǎn)、共線、共面問題。
能夠用斜二測法作圖。
2.空間兩條直線的位置關(guān)系:平行、相交、異面的概念;
會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3.直線與平面
、傥恢藐P(guān)系:平行、直線在平面內(nèi)、直線與平面相交。
②直線與平面平行的判斷方法及性質(zhì),判定定理是證明平行問題的依據(jù)。
、壑本與平面垂直的證明方法有哪些?
、苤本與平面所成的角:關(guān)鍵是找它在平面內(nèi)的射影,范圍是
、萑咕定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用于證明垂直關(guān)系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點(diǎn)到直線的垂線.
4.平面與平面
(1)位置關(guān)系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質(zhì)。
(3)掌握平面與平面垂直的證明方法和性質(zhì)定理。尤其是已知兩平面垂直,一般是依據(jù)性質(zhì)定理,可以證明線面垂直。
(4)兩平面間的距離問題→點(diǎn)到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
①定義法,一般要利用圖形的對稱性;一般在計(jì)算時要解斜三角形;
②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計(jì)算時要解一個直角三角形。
、凵溆懊娣e法,一般是二面交的兩個面只有一個公共點(diǎn),兩個面的交線不容易找到時用此法。
高中數(shù)學(xué)立體幾何知識點(diǎn)
數(shù)學(xué)知識點(diǎn)1、柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到
截面距離與高的比的平方。
(3)棱臺:
幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖
是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①底面是一個圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個扇形。
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
數(shù)學(xué)知識點(diǎn)2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、 俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。
數(shù)學(xué)知識點(diǎn)3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長度不變;
、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。
高中數(shù)學(xué)立體幾何知識點(diǎn)總結(jié)2
名稱 符號 面積S和體積V
1、正方體 a-邊長 S=6a2 ; V=a3
2、長方體a-長;b-寬 ;c-高; S=2(ab+ac+bc) ; V=abc
3、棱柱S-底面積;h-高;V=Sh
4、棱錐 S-底面積h-高 ;V=Sh/3
5、棱臺S1和S2-上、下底面積h-高 ;V=h[S1+S2+(S1S1)1/2]/3
6、擬柱體S1-上底面積 ;S2-下底面積 ;S0-中截面積 ;h-高
V=h(S1+S2+4S0)/6
7、圓柱 r-底半徑;h-高;C底面周長;S底底面積;S側(cè)側(cè)面積
S表表面積
C=2r
S底=r2
S側(cè)=Ch
S表=Ch+2S底
V=S底h =r2h
8、空心圓柱 R-外圓半徑;r-內(nèi)圓半徑;h-高
V=h(R2-r2)
9、直圓錐r-底半徑;h-高 V=r2h/3
10、圓臺r-上底半徑R-下底半徑h-高
V=h(R2+Rr+r2)/3
11、球 r-半徑 ;d——直徑 V=4/3d2/6
12、球缺 h-球缺高;r-球半徑;a-球缺底半徑
V=h(3a2+h2)/6
=h2(3r-h)/3
a2=h(2r-h)
13、球臺r1和r2-球臺上、下底半徑;h-高
V=h[3(r12+r22)+h2]/6
14、圓環(huán)體R-環(huán)體半徑;D-環(huán)體直徑;r-環(huán)體截面半徑;d-環(huán)體截面直徑 V=22Rr2=2Dd2/4
15、桶狀體D-桶腹直徑;d-桶底直徑;h-桶高
V=h(2D2+d2)/12
(母線是圓弧形,圓心是桶的中心)
V=h(2D2+Dd+3d2/4)/15
(母線是拋物線形)
【高中數(shù)學(xué)立體幾何知識點(diǎn)總結(jié)】相關(guān)文章:
高中數(shù)學(xué)立體幾何知識點(diǎn)總結(jié)03-22
立體幾何知識點(diǎn)總結(jié)08-28
立體幾何知識點(diǎn)整理05-06
[優(yōu)秀]高中立體幾何知識點(diǎn)總結(jié)02-08
高中數(shù)學(xué)的知識點(diǎn)總結(jié)04-10